作者|周超臣
配图|虎嗅
11月7日,周六,腾讯WE大会迎来了第八届,也在疫情中迎来了 个线上直播。在今年年中的时候,我在猜测,今年的WE大会会不会取消。万幸。
跟往年一样,马化腾尽管最近一年多一直在静心养伤,但他似乎不愿意缺席每一年的WE大会直播,在WE直播开始后不久,他在朋友圈转发了直播链接。记得有一年,他在深圳蹲守直播时发现时间到了却没有直播信号,他拿起电话就追问团队为什么还没有开始。
在享受今天科学家的烧脑演讲内容前,有些基本须知。从年开始,每年的腾讯WE大会,都是一场科学爱好者的饕餮盛宴,也是青少年的科学启蒙课。每年有七八位(最近几年稳定在7位)来自全球不同领域的 科学家,在北京动物园东侧的北展剧场进行一场为时4个小时的烧脑运动——我一度怀疑北京动物园里的动物们都比特朗普更相信科学——即使再聪明的人在这4个小时内也会虚怀若谷,深感自身的无知,从黑洞到引力波、从癌症和干细胞到脑机科学、从量子计算到时间旅行……
腾讯WE大会无意间成了腾讯科技向善最纯粹的名片。
为了让更多年轻人尤其是青少年接受科学的熏陶和启蒙,今年腾讯还在兰州市五十一中学、衡水中学、贵州师范大学三个地方,与学校合作,举行了线下观看活动,并让学生们有连线对话科学家的机会。
谈及今年WE大会的主题“蓝点”,腾讯首席探索官(CXO)说:“它时刻提醒着我们要保护这 的家园。科学家和天文爱好者们,一直在寻找类地行星、智慧生命,也不断提醒着我们,地球有多么特殊。”
在回顾了今年遭遇的疫情、森林大火、台风、洪水、前所未有的高温天气、全球肆虐的气候灾害后,网大为发出灵*拷问:“我们该如何应对这些挑战呢?我们是否有承认和面对这些挑战的勇气?我们是否能制定出解决方案去保障安全,守护生命的健康,让我们的家园,回归正轨?或者,我们会犹豫不决?甚至,否认这些重大变化正在我们周围发生?即使铁证如山。但放任自流却越来越成为人类的选择,放任自流,只会自食其果。”
“人类必须作出正确的选择。”他说。
网大为还说:“我们不仅要有能力开发助力改善人类生活的理念和解决方案,也要不断有激情与担当,去发现和实现关乎未来的突破性想法。今天的创新项目,能帮助我们做好准备去拥抱未来的重大突破,因此我们要深入地理解世界面临的挑战。它也能够进一步激发我们的热情,去成为向善的一股积极力量。”
过去几年,冥冥之中,腾讯WE大会在偶然间扮演了重要角色。年的WE大会上,美国加州理工学院物理系林德教授、引力波领域 专家BarryBarish(巴里·巴里什)做了一个《从爱因斯坦到引力波》主旨演讲,次年获得诺贝尔物理学奖。
年的腾讯WE大会请来了霍金,腾讯团队跑到剑桥大学录制的霍金视频成了霍金去世前的 一次公开露面,成为了珍贵的影像资料。
今年因为疫情,导致邀请国外的科学家来北京给大家带来科学和智慧变成了困难重重的事情,在要不要举办、如何举办今年的WE大会上,腾讯青年发展委员会副主席李航对虎嗅等媒体说他当时没有把握,但当他们跟科学家们去沟通的时候,有几位科学家的反馈让他们惊讶。“其中最早的一位接受我们邀请的是岁数 的一位,87岁的StevenWeinberg,他是最早接受的,然后发邮件马上答应了。”
这让腾讯决定要办一场规格不减的WE大会。毕竟这是一场为基础科学摇旗呐喊的集会,即使是在线上。
腾讯WE大会筹备团队在科学家所在的国家、所在的城市租下场地、聘请视频拍摄团队,为了一位科学家的演讲,可能来自中国、美国、英国、瑞士等全球各地的团队要克服时差同时在线,加拿大天体物理学家、快速射电暴的捕捉者、麦吉尔大学教授VictoriaKaspi说:“整个世界好像都为我在醒着。”她说,我人生中从来没有这么被对待过和拍摄这样的一条科学的片子。
让科学家得到应有的尊重,把科学的种子埋到更多人的心中,科学才能负重前行。所以这次的WE大会,我们观看视频的时候,会发现科学家们虽然身处全球各地,但通过视频制作团队的努力,把他们都“搬”到了北展会场。
今年WE大会邀请的科学家包括诺贝尔奖获得者StevenWeinberg、干细胞生物学家中内启光、脑机接口权威专家MiguelNicolelis、量子物理学家潘建伟、化学家鲍哲南、天体物理学家VictoriaKaspi、天文学家JaneGreaves。演讲内容从异种培育人体器官到金星生命,从粒子物理到脑机接口。
以下今年7位科学家的演讲实录,文字由腾讯提供:
大家好,非常高兴来到这里,跟大家分享我们正在开展的一些工作。
我叫潘建伟,来自于中国科学技术大学。我今天给大家报告的题目是新量子革命。
请允许我,从古生物学开始讲起。我们的古生物学告诉我们,在10万年之前我们存在着有两类人属。其中一类是尼安德特人,另外一类是智人。尼安德特人比智人更加强壮,甚至他的脑容量比现代人还大。智人,个体是弱于尼安德特人的。那么为什么智人会在进化当中胜出成为现代人的祖先呢?其中主要的原因是智人发明了基本的符号和语言。有了符号和语言的帮助之后,人们就可以进行有效的信息的交互,以至于可以形成一个互为一体的社会化的群体。所以,他在对抗大自然的各种困难当中变得更加地有效。
其实在人类的进化当中还有一个事情是非常重要的,就是所谓的隐私的保护。正因为大脑里面在想什么,在思考什么,是别人怎么样也没法知道的,所以它才能够导致思想的多样性。而思想的多样性,是创新与进步的源泉。比如古希腊的雅典学院和我们春秋战国时候的百家争鸣,正因为这样才导致了各种各样的思想出来推动社会文明的进步。
在人类的历史上,有一次重要的科学革命。根据牛顿力学,他告诉我们一切力学的现象,都是可以统一为一个简单的公式F=ma。与此同时,麦克斯维尔建立的电动力学又告诉我们一切光电磁的现象都可以统一成为一个方程组。 次科学革命所带来的科学进步,极大地推动了信息交互效率的提升。
古时候的信息只是通过口口相传,更近一点,大家有书了、有纸了,可以用书进行千里传书,然后有了著作。到了近代,科学革命的发生,推动了 次工业革命,也就是蒸汽机时代。同时推动了第二次工业革命,进入电力时代。所以整个地球已经变成一个地球村,信息交互的效率越来越高,巨大地推动了我们人类文明的进步。
随着量子力学和相对论的建立,又发生了一次新的科学革命,这是人类历史上的第二次科学革命。在第二次科学革命当中,我们基本上把量子力学在过去年中的应用归属成 次量子革命。在 次量子革命中,大家产生了非常多有用的东西。从某种意义上讲,我们第三次产业变革或第三次工业革命是建立在信息技术的基础之上的。信息技术的硬件的基础就是量子力学。没有半导体晶体管的发明,就不会今天的计算机、手机,没有万维网的发明就不会有我们现在的万物互联、互联网的概念。
所以从计算、网络和感知方面,其实都是量子力学所带来的这么一个巨大变革。所以从某种意义上讲,信息交互已经并将一直伴随着我们人类的进化和社会的发展。在我们这过程当中有两个东西是非常重要的, 个是信息交互的效率,第二个是我们的隐私的保护。这是刚才已经讲到了的。
那么怎么来做到这两点呢?我们可以通过计算能力的提高和网络效率的提高来加强信息交互的效率。通过信息安全和网络安全,来加强对我们个人的和各类各样的隐私的保护。实际上,为了实现信息的安全,大家就设计各种各样的非常复杂的加密系统来保证信息的安全传输。有矛必有盾,在二战当中德*一个非常高级的密码,那个密码被图灵给破解了。现在我们广泛使用的一个公钥体系,RSA位在年就被破解了,位在年被破解了。现在我们银行里面用的U盾,大概经常用的是位。大家现在已经建议,随着计算能力的发展, 不要去使用它(RSA)了。所以人类历史告诉我们的经验,就是依赖于计算复杂度的经典加密算法,随着我们计算能力的增加,原理上都会被破解。
这么一来,我们的信息技术就面临着一个信息安全的问题,就是怎样才能够很好的达到我们信息的安全传输?早在一百多年之前,有一位作家,他就写过一段话,他说人们早就怀疑“以人类的才智无法构造人类自身不可破解的密码。”那么到底可不可以呢?这是我们后面要回答的一个问题。
除此之外,随着社会的发展,我们信息交互的效率提高,我们计算能力的需求,也在快速的增长。 台计算机是在年造出来的,当时的重量是一吨,它的功耗是8.5千瓦左右,每秒钟可以算次。在当时看来已经是非常的快了,所以当时IBM的总裁ThomasWatson曾经预言全世界估计只需要5台这样的计算机就可以了。
但是经过了将近70年的发展,到了年的时候,其实一部智能手机的计算能力的总和已经超过了整个阿波罗登月计划的计算能力的总和。所以从这种角度上讲,我们对计算能力的需求是在快速地增长。
目前我们所面临着的计算能力的瓶颈,就是我们拥有的计算能力是非常有限的,如果我们把全球的所有的计算机的计算力加在一起,一年里面,都没办法完成对2的90次方个数据的穷举搜索,但是这个传统的发展模式目前已经受到了严重的制约。摩尔定律正在逐渐地逼近极限,那么大概会在不到十年左右的时间,我们晶体管的尺寸大概就会达到原子尺寸——亚纳米水平。这个时候,晶体管的电路原理将不再适用。那么怎么来解决这些问题呢?
量子力学,可以说是他生的 个小孩就是现代信息技术。但他自己在百余年的发展过程当中,又已经准备好产生第二个小孩,为解决前面那种算力不够,信息安全的传输不够这些问题做好了准备。
这里我需要简要的介绍一下什么叫做量子。所谓的量子,它其实就是构成物质的最基本单元,它是能量的最基本携带者,它的基本特征就是不可分割。比如说我手中有一个激光笔,这个激光笔打出来的光的能量,如果你可以用一个放大镜来看一下的话,其实发出来的光本身是由很多个小颗粒构成的,那么这样的小颗粒我们把它叫做光子或者光量子。你不可能再拿刀来切一下,变成1/2个光子等等。它有基本特征,它就叫作量子叠加。
那么量子叠加是什么意思呢?在我们的经典物理学当中,一只猫,它可以处于死和活这么两个状态,可以来代表一个信息的传输单元0或者1,就是加载一个比特的经典信息。但是到了量子世界的时候,在微观世界里面的一只猫,它不仅可以处于0或者1的状态,甚至可以处于死和活这个状态的相干叠加。对这样一种态,我们就把它叫做量子比特。那在物理的实现上是非常简单的。
一个光子在真空当中传播的时候,它可以沿着水平方向偏振,竖直方向偏振。这两个状态就代表0或者1。当它沿着45度方向偏振的时候,其实就是所谓的量子叠加态
0+
1。那么爱因斯坦对这个问题做了比较深入的思考,他说,对一只猫可以处于死和活状态的叠加,那么两只猫是不是可以处于活活和死死状态的叠加呢?这就相当于两个骰子纠缠在一起,哪怕他们相距非常遥远,一个在合肥的科大,一个在深圳腾讯的总部。那么我们在扔这个骰子的时候呢,单边的结果是完全随机的,但是两边的结果在当时实验当中的是一模一样的。
爱因斯坦把这种现象:遥远地点之间的诡异的互动,这么一种现象就把它叫做是量子纠缠。对这个量子纠缠,在实验上怎样才能把它造出来呢?你需要有这种单个量子的调控,比如说我有一杯水,你把它喝掉一口是很容易的,但是如果你能在里面拿出一个水分子来,这在技术上就变成一个非常困难的事情。科学家经过几十年的努力,慢慢地掌握一种能力,可以对一个光子、一个原子把它拿出来,按照你的需要进行操纵,行进主动的操纵。
那么有了这样一种能力后,你就可以把一个个量子比特,按照你的需要进行调控。那么这个时候就催生了一个新的学科,我们把它叫做量子信息科学,这直接导致了第二次量子革命的发生。那么利用量子通信可以提供一种原理上无条件安全的通信方式,利用量子计算可以提供非常强大的计算能力,而用于各种各样的复杂系统的研究。
量子通信的 个应用就是所谓的量子秘钥分发。那比如说有张三和李四,他们为了进行安全的通信,可以先送一系列单光子,处于各种各样状态的单光子,由张三送给李四。那么如果中间有个窃听者存在,那我刚才讲到这光子的能量是不再可分的,不能分成半个,所以如果窃听者要把这个光子拿走的话,接收者李四就收不到了,所以这个秘钥你就没有收到。
大家好,我是米格尔·尼科莱利斯,美国杜克大学神经生物学、神经学和生物医学工程教授。今天我将为大家介绍脑机接口和这一技术从基础科学到应用于神经康复的研究历程。
首先,我要感谢腾讯科学WE大会的盛情邀请,我很高兴也很荣幸能参加此次大会,感谢腾讯的邀请。正如我刚才说的,今天我要讲一讲过去20多年脑机接口技术的发展。年我和JohnChapin开始着手研究一种新的技术,我们称之为脑机接口。
那什么是脑机接口呢,大家现在看到的是我们最初发布的用来阐释这一想法的图解,我们希望将活体动物或人类的大脑与设备直接连接。比如电子的、机械的甚至是虚拟的人造设备。它们无需放在连接对象的近旁,我们可以把它们放在另一个房间,另一个国家,甚至地球另一端。
我和约翰的想法是,实时采集实验对象准备移动身体时大脑发出的电信号,但我们并不观察实验对象的身体活动,而是记录相应的大脑活动。然后在不到1/3秒的时间里,将其转化为能够发送至人造执行装置的数字指令。我刚才提到过,该装置可能就在连接对象旁边,也可能离他很远。连接对象直接通过大脑控制装置,无需身体参与。(这个装置)将包含运动想象的脑电信号转化为能够控制人工装置的电子指令,整个过程必须在毫秒以内完成,因为这正是从运动想象产生到身体执行的时间。
接下来我要给大家展示,脑机接口概念是如何进化的?我们最初的实验是在猴子身上进行的,之后逐步实现了人类实验。这就是 个实验,一只恒河猴学会了如何控制这个最初版本的脑机接口,该设备能控制显示屏上电脑光标的移动,让这只猴子和我们一样玩电子游戏。这个游戏的规则是,让光标穿过显示屏上随机出现的一个球体,由猴子通过操纵杆来完成。
每一次光标成功穿过目标,猴子就能得到一滴喜爱的橙汁作为奖励。但它不知道的是,每次正确完成操作,我们就会记录下它大脑中个神经元的活,然后把这些脑电信号发送给一组计算机。由它们来提取其中的运动指令,将其嵌入、然后转化为机械手臂可以理解的电子指令。
为什么要这样设计?我们的想法是:当猴子能够非常熟练地通过操纵杆玩游戏的时候,我们就拿走操纵杆,打开脑机接口,观察猴子能否让机械手臂控制光标穿过目标。而且仅靠想象来完成这一过程,不涉及任何身体动作。正如大家所见,猴子做到了。这就是实验的上半部分,我们将大脑从身体的束缚中解放出来,使之能够直接与外部世界互动。
猴子一开始用操纵杆玩游戏,这个操纵杆惯性非常低, 度很高,能够准确地将光标移入目标中。每一次操作完成,猴子都会得到一滴它喜欢的橙汁。猴子对游戏越来越熟练,每天玩一个小时,准确率能达到99%以上。于是我们意识到,是时候首次测试一下,通过脑机接口进行实时操作这个想法了。
于是我们拿走了操纵杆,让猴子自然地坐在椅子上。我们问自己:猴子能不能弄明白它只需要动脑想象,就可以让机械手臂控制光标,然后和之前一样得到果汁呢?来看它的操作,它做到了。猴子的身体没动,手臂也没动,只是想象着把光标移到目标内。与此同时,我们的电脑记录下猴子大脑发出的电信号,提取其中能够控制真实手臂活动的运动指令,转变其路径,使之控制机械手臂来完成游戏。
正如大家所见,逐渐地,猴子能越来越熟练地,用大脑控制机械手臂完成游戏,无需任何身体动作。这只是脑机接口发展之初的情况,在过去20多年里,我们制造出了很多不同种类的脑机接口。比如同时控制两只机械手臂的,还有控制腿部的,但接下来我要说的是其中最复杂的一种,我们称之为“脑-机-脑接口”。
下面给大家展示的,都是由大脑直接与虚拟设备互动完成的。这里不涉及任何机械设备,有的只是一个猴子已经将其认作自己身体一部分的虚拟设备,我们把这个实验称为触觉识别。猴子需要做的是,想象如何将虚拟手臂移至屏幕显示的物体上。这些物体都具有无法通过视觉识别的虚拟质感,猴子需要识别出这些质感才能得到橙汁。它需要选出触觉振动频率 的物体,也就是摸起来类似于砂纸一类的粗糙物体,但不能用自己的手,而是要通过想象来控制一只虚拟手臂完成。
随着虚拟手臂在物体表面划过和虚拟质感相对应的电信号,回传到猴子大脑中一个叫做触觉皮层的区域。该区域的作用是处理触觉信息,使我们能够识别出所触摸的物体。接下来大家会看到,猴子能够通过脑机接口移动虚拟手臂,然后通过另一轮控制使这一过程形成封闭回路,把触觉信息从虚拟世界中传回大脑。然后做出选择,选出两个物体中触觉振动频率较高的那个。
来看一下,大家听到的是脑细胞的声音。观察一下这两个触觉振动频率不同的物体,你会发现,声音的大小和振动频率的高低是相对应的。猴子控制着一个虚拟手指,触摸这两个物体,然后做出选择以获得果汁。手指划过物体,猴子看到的就只是这样的图像,但它需要选择哪个触感振动频率更高,也就是这个。所以它会把手指停留在那个物体上,这样就能得到一滴橙汁。注意:每个任务中两个物体的频率比是不同的,所以难度相当高,但是猴子做到了,就像用自己的手指完成的一样好。
观察到这一点后,我们意识到,距离在人类身上运用这一技术已经不远了,但我们还需要再做一个决定性的实验。我们需要证明,动物能够学会使用搭载了无线传输技术的脑机接口来控制一辆自动驾驶设备,载着某一对象从房间里的某一随机位置出发,到达目标位置。取走我们放在那里的,比如说葡萄,而整个的过程全部通过思考完成。
想象一下,这不是腿或者胳膊,这是一个电动轮椅,是电力驱动的移动设备,和猴子自己的身体毫无关系。所以在这个任务里,猴子需要做的不仅仅是思考如何移动,还要学会和自己以前从未见过的电动机械互动。在接下来这个视频里,我们首先会看到安装在实验室天花板上的摄像头拍摄的画面,显示猴子如何控制电动轮椅,在我们事先设定好的不同位置间穿梭。他会从某一个白色圆圈处出发,通过想象控制轮椅移动到目标地点,拿到葡萄。
一开始,从上面看,猴子用大脑控制自动驾驶设备的移动。然后我们把猴子放到一个新的地点,它又设计了一个新路径,仍然能准确地到达目标位置取走葡萄。现在我们来看一下正面拍摄的影像,大家看到的就是美式全自动午餐,有了脑机接口,你就能获得这样的午餐。你什么都不用做,只需要到达领餐处,然后开吃就可以了。当然,你需要思考如何到达那里。剩下的就由我们,或者说由计算机来替你完成。
有了这样的发现后,我们意识到,它的意义要远远超过我38年来一直在寻找的新的大脑研究方法。我们或许可以把这一发现,转化成新的治疗手段,来帮助全世界万因为严重的脊柱损伤而在痛苦中挣扎的人们。大家可能都知道,这样的损伤一旦发生,病人就会丧失感觉和活动能力。受伤部位以下的身体无法动弹,因为大脑发出的包含着运动指令的电信号,无法再通过脊柱中的神经传输至身体的边缘部位。
那要如何处理这些无法在体内传输的脑电信号呢?我们的方法是使用脑机接口,从大脑中采集这种不断产生的信号,但并不指望脊柱来发挥其原本的传输作用,而是绕过这一环节。我们制造出一种计算机电子旁路,将采集到的脑电信号绕过损伤部位,以数字形式传输至一个可穿戴式的全新机械身体中,病人可以通过大脑控制该机械身体使其移动到某一位置。
这个想法我和JohnChapin年就提出了,当时我们认为年底前能够实现。几年之后,巴西再次获得久违的举办足球世界杯的机会。年,FIFA宣布由巴西主办年世界杯足球赛,当时我就意识到,我们可以在开幕式上做些新的尝试,而不只是来一场足球比赛。
我们可以首次在这种大型体育赛事中,加入科技展示,所以我向当时的巴西总统做出了提议。世界杯的开幕式,会有6人到现场参加,超过10亿观众收看转播。我们可以做一次,脑机接口技术演示,让一名瘫痪的巴西年轻人,在 脑控下肢机械外骨骼的帮助下为世界杯开球。
出乎意料的是,总统答应了,然后我们就开始着手准备。为此,我联系了世界各地的朋友。大约来自5个大洲、25个国家的人把手头的事情暂时搁置10个月,带着他们的学生、专利和技术来到巴西,帮助我们制作 个脑控下肢机械外骨骼。我们还招募了8个脊柱损伤病人,(他们)都是从一个包含了6名病人的巴西数据库里选出来的。这8个人都是完全性脊髓损伤患者,有的瘫痪已经超过10年,大家可以看到这里的数据,13年、11年的都有,他们受伤部位以下的身体都无法动弹。
我们设计了一个非常严苛的训练计划,让他们在世界杯之前的半年时间里,每周训练两天,每天一小时。训练首先在虚拟环境中进行,他们需要学习使用一种非侵入式的脑机接口设备。无需手术,无需植入电极,我们仅仅使用能够贴在头皮表面的扁平传感器,用来记录脑电信号。
病人通过观察自己的虚拟替身进行训练,该替身是一个看起来和他们相似的虚拟足球运动员,会在足球场上走动和踢球。病人们一边观察,一边学习用自己的大脑控制它的活动。每一次虚拟人物的脚接触地面,病人的手臂都会收到触觉反馈,从而再次感受到在地面行走的感觉。
当病人们能够熟练地在虚拟环境中进行操作后,我们开始让他们使用一系列世面有售的,用于脊柱损伤病人恢复的机械助行器, 再为他们装上我们设计的外骨骼。就是我刚刚提到的那个,它是这个样子的。这是一个有着12自由度的机电外骨骼,这是病人所在的操作舱,这里还有一张病人训练的图片。另一个图片显示的是装有扁平传感器的头盔,可以贴紧头皮,来记录包含着运动指令的大脑活动。当病人想要行走或踢足球时就会产生这些活动,这些就是我们使用的,用来驱动和控制下肢外骨骼关节活动的电子和机械设备。
有意思的是,我们使用的电机能够将控制信号传送给液压管线,由此产生模拟度更高的,和人类更为相似的动作,优于一般机器人的数字和电子动作。因为病人们希望自己看上去更像普通人,走路的样子也更自然。这是该技术的另一个主要创新应用,发明人是慕尼黑工业大学的GordonCheng。这是一种安装于腿部外骨骼足底的印刷电路板,带有感知压力、距离和温度的传感器。
我们希望外骨骼脚部每一次接触地面时,都能向病人的前臂发送触觉反馈信号。这样,病人就能体会到到踩在地面的感觉,感受地面的触感、硬度,踩在什么样的地面上,能走多远?甚至能接收到温度反馈。大家现在看到的是这个病人 次尝试站立行走,在世界杯之前,8名病人都在我们的实验室里成功实现了站立行走,因为他们都学会了熟练控制外骨骼。
这是一位高位胸椎损伤病人,大家看到他的头盔在发光,表明他正在通过大脑活动控制轮轴。指令正确,他的两条腿正交替运动,他可以通过面前的大镜子看到自己站起来走路的样子。同时他的前臂能够感受到,我刚刚提到的那些足底传感器,传来的触觉反馈,这是病人瘫痪6年来 次站起来走路。他之前是个游泳运动员,后来因为一场车祸造成胸部以下瘫痪,从他的表情就能看出,6年以后重新走路是什么感觉。这样的场景我见证了8次,可以说,那是我38年科学生涯中的高光时刻。因为我从没想过可以走到这一步,但我们做到了。
这是JulianoPinto,是在世界杯开幕式上开球的运动员,脊柱T4以下身体瘫痪已经9年,也是因为车祸。这是我们上场之前,在足球场入场的地方,这就是位于圣保罗的开幕式场地。现在大家看到的是,正式开球前Julian的 一次试踢,大家看到我鼠标这里的蓝灯正在闪,代表着外骨骼处于启动状态。Julian把双臂放在外骨骼的扶手处,那里安装的传感器在感受到来自手臂的压力后就会启动外骨骼。之后,Julian只需要摆好身体姿势,想象踢球的动作。戴着蓝色帽子的是我的学生,他把球放在Julian面前,然后Julian就把球踢了出去。
年6月12号下午3点半整正式开球时也是这样的流程,有一件事Julian事先不知道,我们给他准备了一个小惊喜,启动了一个安装在这个位置的传感器。巴西的孩子们可能在还没出生的时候就会用足尖大力触球,在球场上没有其他办法时,足尖大力射门是 的进球手段。所以我们在这里安装了一个传感器,但事先没有告诉他。Julian把球踢出去之后开始欢呼,我们冲上去拥抱他,大家的情绪都非常激动,整个球场都因为这个开球而沸腾了。
Julian当时喊得并不是:我踢出去了,我做到了或者我射门成功了。他喊的是:我感觉到球了,我碰到球了。因为他的大脑在经过训练以后,已经能够识别所有外骨骼上的传感器传输的信号,因此可以体验到真正的踢球的感觉。这是10年来的 次,对于10年中一直坐在轮椅上的人来说,这是不同寻常的经历。
我们原以为事情到这里就结束了,但事实证明并不是。几个月以后,我们把Julian和其他7名病人重新带回实验室,进行了神经测试。之前我提到过Julian脊柱T4以下瘫痪已经10年,这是他的脊柱损伤等级。但我们进行了神经测试后,他当天的等级评定是脊柱T11以下瘫痪。
也就是说,经过10个月的训练,他的7节脊椎,恢复了感知、活动和运动控制方面的功能。之前他只能控制这个部位以上的肌肉,只有头部以下和胸椎中部以上的部位有知觉。10个月的训练结束以后,他的身体知觉恢复到了髋关节的位置,而且他也能控制这部分身体的肌肉收缩,他恢复了7节脊椎的功能。
接下来给大家介绍的这位女性病人。她的触觉、内脏感觉和运动控制功能也得到了大幅恢复。平均来看,从启动训练开始,我们对这些病人进行了28个月的观察。在此期间,他们平均恢复了10节脊椎功能。这涵盖了身体的一大块区域,他们恢复了这部分身体的感知能力和内脏控制能力,处于这一区域的内脏有膀胱、小肠、胃等等。
其中有一位病人怀孕了,她终于能感觉到孩子在肚子里踢她。她经历了9个月的正常孕期,能感受到胎动和子宫收缩。 生下一个男孩,她能感受到整个妊娠期的身体变化,要归功于身体知觉的大幅恢复。
但最让人吃惊的结果在这里,这是我刚才讲到触觉恢复的时候 个提到的病人。她之前瘫痪11年,大家看看她在视频里的情况。这是她以前无法做到的,这是接受训练22个月以后,她在我们的要求下尝试走路的情况。这是她的表现,她在我们面前走起路来。大家看到的这些线,作用是记录她现在已经可以自主控制的肌肉活动。能做出这样的动作,表明她已经可以交替活动双腿了。在这之前和之后的一天,她都做了一小时这样的训练。所以,这些病人现在可以脱离外骨骼活动了,我们也得以记录下他们在22个月的训练后神经系统的恢复情况,从病情的临床分级角度看,这意味着什么呢?
这8个病人加入项目的时候都是完全瘫痪的,在我们的专业领域里,这意味着开始训练前,他们还没有恢复任何受损脊柱部位以下的身体功能。但28个月之后,其中有一位病人12个月以后就终止了训练。另外7个人坚持了下来,并且身体功能得到了专业人士之前无法想象的恢复。病情分级也变为了部分瘫痪,因为他们恢复了很大一部分运动能力和触觉。
大家看到的这篇论文是我们年发表的,过去几百年以来的专业文献里,这是 篇记录了 等级的脊柱损伤造成完全瘫痪10年后,病人恢复部分身体功能的论文。这些病人后来怎么样了呢?其中的3人坚持下来,继续接受我们的训练。并且增加了训练的天数和小时数,他们的身体得到了更进一步的恢复,不再需要依靠机械外骨骼行走,只需要一个小型助力车为身体提供一些支撑。根据病人情况,助力车可以支撑50%到70%的身体重量。另外还需要些一些电流辅助,我们会将微弱电流传送至病人腿部的关键肌肉,使之能够承受运动中自身产生的自主收缩。也就是说,3个病人获得了一定的自主运动能力。
这在以前是无法想象的,没有人想过这会成为现实。在我们的重拾行走计划开始之前,这并不是我们的目标。如果我当初把它作为目标写进资金申请书或者论文里,大家恐怕会笑话我。因为谁也没想到这些病人能够走到今天这一步,我们当时 的目标就是制造外骨骼帮助病人活动。但最终,完全出乎意料地,病人恢复了一定的自主活动能力。这样的结果,病人自己也从没想过。
这就说明,有时候基础科学能引领你,到达你从未想象过的地方,为你带来意料之外的发现。为了这一天,我等了38年。因为亲眼见证了这一切,我的每一秒付出都是值得的。感谢大家!
大家好,我是加拿大麦吉尔大学的VictoriaKaspi。
今天我想和大家聊一聊快速射电暴,一种我们不久前发现的天体物理现象,它是一种我们尚未破解的神秘现象。如果你问我研究的是什么,我会说不知道。因为我们真的不知道快速射电暴来自哪里,那么我们所说的快速射电暴是什么?
首先我来解释一下无线电(射电)。说到无线电,很多人想到的就是带天线的收音机。它能够收集地球上的电台发出的无线电波,这些无线电波在天线中产生电流,然后电流通过收音机内部的电线先后传输到放大器和话筒,这样我们就可以听到电台的内容了。收音机有一个小的旋钮,我们可以通过旋钮来选择电台,选择我们想要的无线电频率。你一定不会想同时收听所有电台,那样的话所有电台都在播放,就会乱套了。因此收音机每次只能选择收听一个电台,就像天线收集无线电波一样,我们就是这样探测到快速射电暴的。
除了来自地球以外的无线电波,快速射电暴来自银河系之外,并很可能来自外太空。那什么是快速射电暴?他们是天空中一闪而过的射电波,可能在任何时间出现在天空中的任何位置,持续时间只有千分之几秒,也就是几毫秒。稍后我会解释为什么它来自银河系之外,来自宇宙中最遥远的地方。
目前有报道的捕捉到快速射电暴的次数只有次左右,但如果我们仰望天空,理论上每天可以探测到一千次快速射电暴。这意味着它在宇宙中并不罕见,随时随地都在发生,但直到最近我们才发现它,并且对它的源头一无所知。
那么我们如何捕捉到快速射电暴?抛物面型的天线就像一个盘子,表面可以收集来自外太空的无线电波,并将它们集中到树立在表面上的天线中。然后无线电波在天线中产生电流,电流通过电线传输到中控室的电脑中,电脑会将无线电信号放大并转为数字信号,记录在电脑磁盘上。
当然肉眼是看不到无线电波的,但天线可以看到它们,我们用这样的望远镜记录下它们,那么我们如何捕捉到快速射电暴?
这幅图就是我们用望远镜记录下的数据绘制的,我们读取电脑磁盘上的数据并将其转换成图表。X轴表示捕捉到无线电信号数字化样本的时间,每隔半毫秒甚至更短的时间我们就会获得这样的样本。X轴表示时间,而Y轴表示望远镜能探测到的所有不同的无线电频率。与普通的收音机不同,这台望远镜能同时探测到所有不同的频率。
我们也对频率进行了数字化处理,每个地面广播电台只有一个频率,但快速射电暴看起来则完全不同。它是一个频率组合,可以发射所有频率的无线电,但我们首先探测到的是 频率的无线电,然后是频率较低的无线电。这期间会有一个延迟,而这个延迟非常重要,因为这说明快速射电暴来自遥远的宇宙深处。
如果我们能用软件对延迟进行修正,然后把所有已修正延迟的无线电频率集合起来,那么我们看到的就是望远镜所看到的。最开始什么都没有,然后是持续几毫秒的无线电波大爆发,接着就销声匿迹。对于大多数快速射电暴,我们只能在天空中看到一次,以后就再也看不到来自同一爆发源的射电暴,那么为什么高频无线电波会更早到达呢?
这是一种我们很熟悉的现象,和光的散射同理。就像棱镜可以将白光散射成不同颜色的光一样,因为照射进玻璃的各种颜色的光会因为频率的不同而产生行进方向上的改变。同时还有时间延迟,因此光的速度取决于光的颜色以及光波的频率。无线电波也是一样,不同频率的无线电波在穿越星际等离子体时的速度是不同的。
外太空并不完全是真空的,那里有很多原子和电离原子以及自由电子,无线电波在星际旅行中会时遇到这些电子。这些电子就像棱镜一样,一个快速射电暴源可以一次发出多个频率的射电波。不同频率的射电波遇到星系空间中的自由电子后会以不同的速度到达地球, 频率的射电波会 到达,然后低频率的射电波到达。
这会产生巨大的影响,就算整个爆发只持续几毫秒,“散射”也可能会持续很多秒甚至一分钟。对于一个快速射电暴,如果爆发源很接近地球。那么我们探测到的散射或者说延迟会很小,但如果是星际空间量级的距离,散射程度就会是巨大的。对于快速射电暴,它的爆发源远在银河系之外。
我们从散射程度就可以确定,这些射电暴一定是来自宇宙的深处。如果我们能在地球上观测到宇宙中正在发生的快速射电暴,那么爆发源那里一定是亮到无法想象的。那一定是某种超乎想象的能量的大爆发,是什么导致了快速射电暴的发生?而快速射电暴又是什么呢?
这方面的研究成果已经发布了一些。 篇研究论文发表于年,天体物理学家们试图解开快速射电暴的身世之谜。他们提出了很多观点,比如星体爆炸、星体撞击、中子星撞击、中子星与黑洞或超高磁星撞击、或者中子星与不稳定磁场撞击,从而产生巨大的射电暴。
科学家们提出了许多想法,但目前还没有一个模型能够解释快速射电暴的所有特性。 次报道是年,但年我们得到了一个重要的新线索。我们在捕捉到快速射电暴后对其中一个射电暴的位置进行长时间观察,这给我们带来了惊喜。我们突然看到从天空中的同一位置来的具有相同散射程度的多个射电暴。这表明它们来自同一个爆发源,这在之前是从来没有发现过的。
我们从来没有探测到同一个爆发源再次发出射电暴,发现不同射电暴来自同一个爆发源具有重大意义。自那之后我们在过去一年左右的时间里又探测到了数百个射电暴,我们完全推翻了所有认为是星体灾难爆发出射电暴的观点。这种观点认为爆发源在发出射电暴后会自我毁灭,但一个星体不可能爆炸和自我毁灭几百次。对于这个快速射电暴,我们知道它不可能是由于星体灾难而产生的。它让我们发现了关于爆发源的重要知识,但所有快速射电暴都会重复吗?我们真的不知道。
我们对许多射电暴进行了长时间观察,也许有些只是在很慢地重复,那么所有射电暴都会重复吗?我们不知道。而重复的和不重复的射电暴的爆发源是什么?我们也不知道。那么我们如何去了解它?我们要找到更多的快速射电暴。我们需要研究它们的整个“家族”,但如何才能研究随机出现在天空中的这种天体物理现象的源头呢?
射电暴可能出现在任何地方,我们不知道它们何时何地会出现。那么我们需要什么样的望远镜呢?我们需要可以随时观察任意位置的望远镜,这听起来是个很大的挑战,但我们正在加拿大使用新型的CHIME望远镜做这件事,也就是加拿大氢气强度映射实验。CHIME是一种革命性的新型望远镜,它和你们见过的任何射电望远镜都不一样,它没有传统的聚焦于一点的抛物面反射镜,而是由四个圆柱形反射镜组成。每个反射镜长米,宽20米。CHIME望远镜的总面积相当于五个曲棍球场,所有部件都是不可移动的,反射镜都是沿正南正北方向放置的。
如果天空中有什么出现在它上方,我们就可以看到。因此我们可以全天候地观测整个北半球的天空,进而探测出快速射电暴。每个反射镜的轴心都安装了根天线,频率范围在-兆赫,因此总共有根天线来收集信号,收集到的信号会通过电缆传输给精密的电子设备。这些电子设备安装在房屋下面的箱子里以及反射镜下面和旁边,数据传输量大约是每秒13TB,与全球蜂窝网络的每秒数据传输量相当,这些数据通过望远镜现场的超级计算机实时处理。
那么我们为什么要把望远镜造成圆柱形呢?对于传统的射电望远镜,我们可以定点观察天空中的某个特定区域。但它只能观察一个非常小的区域内发生的短暂现象,你不知道你划定的区域对不对,事实上很可能不对。快速射电暴可能来自各个方向,但也许恰恰你划定的方向上没有,因此发现快速射电暴就像中彩票头奖一样难。
圆柱形反射镜面向一个方向上,而另一个方向在天空中是一片巨大的区域。反射镜对那片区域也是可以全天候监测的,CHIME望远镜的探测范围比传统射电望远镜大得多。因为我们无法预测瞬间的现象会发生在哪里,所以广泛的探测范围是非常必要的。
因此CHIME望远镜能在一年左右的时间里探测到数百个快速射电暴,那么为了能与反射镜巨大的探测范围相匹配,我们需要一个速度超乎想象的软件管道,用数百台计算机实时处理这些数据。我们不可能每秒存储13TB的数据,我们会丢掉大部分数据。
软件管道是由学生和博士后在 程序员的指导下编写的,庞大的软件管道作为一个触发系统实时运转。我们对每秒13TB的数据进行有效的缓冲,而且缓冲是非常简洁的。作为触发系统的软件管道锁定快速射电暴,数据在被覆盖之前会被卸出至电脑。这样电脑就可以从容地对数据进行分析,这个系统自年以来一直运行良好。
软件管道就装在反射镜旁边的集装箱里,整个系统是由 的研究员团队搭建的,包括从本科在读生到博士后的学术人才以及其他专业人士。该系统一直运行得很好,使得我们现在能探测到大量的快速射电暴。
目前在南半球探测到的快速射电暴,都是由位于澳大利亚的Parkes射电望远镜发现的。Parkes望远镜一直在有效地运行,但探测到的数量不多。而我们的CHIME望远镜,得益于它巨大的探测范围和高速数据管道。我们覆盖了整个北半球的天空并可以到处探测到快速射电暴,而我们的重大发现之一就是17个新的重复爆发源。
这表明年探测到的 个重复爆发源并不是个例,CHIME望远镜让我们可以探测到全部重复爆发源发出的射电暴。有了这个基础,我们就可以做一些有趣的统计研究。比如我们可以对比重复爆发源和非重复爆发源发出的射电暴的持续时间和长度,我们发现重复爆发源发出的射电暴的持续时间略长,平均多出几毫秒,这说明重复爆发源和非重复爆发源可能是两种类型完全不同的天体。
因此快速射电暴可能不止来自某一种类型的天体,而是两种甚至更多种类型的天体。目前我们正在制作 个CHIME望远镜快速射电暴目录,记录多个爆发源。我们还将进行多项研究,比如天空分布属性分布和散射程度分布,从而破解爆发源在宇宙中是如何分布的,我们对此感到非常兴奋。
我想说,请继续